Matrix-guided control of mitochondrial function in cardiac myocytes

Abstract

In ventricular myocardium, extracellular matrix (ECM) remodeling is a hallmark of physiological and pathological growth, coincident with metabolic rewiring of cardiac myocytes. However, the direct impact of the biochemical and mechanical properties of the ECM on the metabolic function of cardiac myocytes is mostly unknown. Furthermore, understanding the impact of distinct biomaterials on cardiac myocyte metabolism is critical for engineering physiologically-relevant models of healthy and diseased myocardium. For these reasons, we systematically measured morphological and metabolic responses of neonatal rat ventricular myocytes cultured on fibronectin- or gelatin-coated polydimethylsiloxane (PDMS) of three elastic moduli and gelatin hydrogels with four elastic moduli. On all substrates, total protein content, cell morphology, and the ratio of mitochondrial DNA to nuclear DNA were preserved. Cytotoxicity was low on all substrates, although slightly higher on PDMS compared to gelatin hydrogels. We also quantified oxygen consumption rates and extracellular acidification rates using a Seahorse extracellular flux analyzer. Our data indicate that several metrics associated with baseline glycolysis and baseline and maximum mitochondrial function are enhanced when cardiac myocytes are cultured on gelatin hydrogels compared to all PDMS substrates, irrespective of substrate rigidity. These results yield new insights into how mechanical and biochemical cues provided by the ECM impact mitochondrial function in cardiac myocytes.

Publication
In Acta Biomaterialia.
Date