Selected Publications

Contraction of cardiac myocytes depends on energy generated by the mitochondria. During cardiac development and disease, the structure and function of the mitochondrial network in cardiac myocytes is known to remodel in concert with many other factors, including changes in nutrient availability, hemodynamic load, extracellular matrix (ECM) rigidity, cell shape, and maturation of other intracellular structures. However, the independent role of each of these factors on mitochondrial network architecture is poorly understood. In this study, we tested the hypothesis that cell aspect ratio (AR) and ECM rigidity regulate the architecture of the mitochondrial network in cardiac myocytes. To do this, we spin-coated glass coverslips with a soft, moderate, or stiff polymer. Next, we microcontact printed cell-sized rectangles of fibronectin with AR matching cardiac myocytes at various developmental or disease states onto the polymer surface. We then cultured neonatal rat ventricular myocytes on the patterned surfaces and used confocal microscopy and image processing techniques to quantify sarcomeric α-actinin volume, nucleus volume, and mitochondrial volume, surface area, and size distribution. On some substrates, α-actinin volume increased with cell AR but was not affected by ECM rigidity. Nucleus volume was mostly uniform across all conditions. In contrast, mitochondrial volume increased with cell AR on all substrates. Furthermore, mitochondrial surface area to volume ratio decreased as AR increased on all substrates. Large mitochondria were also more prevalent in cardiac myocytes with higher AR. For select AR, mitochondria were also smaller as ECM rigidity increased. Collectively, these results suggest that mitochondrial architecture in cardiac myocytes is strongly influenced by cell shape and moderately influenced by ECM rigidity. These data have important implications for understanding the factors that impact metabolic performance during heart development and disease.
In JMCC, 2020

Purpose of Review: In this article, we review the different model systems based on human-induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) and how they have been applied to identify the cardiotoxic effects of anticancer therapies. Recent Findings: Developments on 2D and 3D culture systems enabled the use of hiPSC-CMs as screening platforms for cardiotoxic effects of anticancer therapies such as anthracyclines, monoclonal antibodies, and tyrosine kinase inhibitors. Combined with computational approaches and higher throughput screening technologies, they have also enabled mechanistic studies and the search for cardioprotective strategies. Summary: As the population ages and cancer treatments become more effective, the cardiotoxic effects of anticancer drugs become a bigger problem leading to an increased role of cardio-oncology. In the past decade, human-induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) have become an important platform for preclinical drug tests, elucidating mechanisms of action for drugs, and identifying cardioprotective pathways that could be further explored in the development of combined treatments. In this article, we highlight 2D and 3D model systems based on hiPSC-CMs that have been used to study the cardiotoxic effects of anticancer drugs, investigating their mechanisms of action and the potential for patient-specific prediction. We also present some of the important challenges and opportunities in the field, indicating possible future developments and how they could impact the landscape of cardio-oncology.
In Curr Cardiol Rep, 2020

In ventricular myocardium, extracellular matrix (ECM) remodeling is a hallmark of physiological and pathological growth, coincident with metabolic rewiring of cardiac myocytes. However, the direct impact of the biochemical and mechanical properties of the ECM on the metabolic function of cardiac myocytes is mostly unknown. Furthermore, understanding the impact of distinct biomaterials on cardiac myocyte metabolism is critical for engineering physiologically-relevant models of healthy and diseased myocardium. For these reasons, we systematically measured morphological and metabolic responses of neonatal rat ventricular myocytes cultured on fibronectin- or gelatin-coated polydimethylsiloxane (PDMS) of three elastic moduli and gelatin hydrogels with four elastic moduli. On all substrates, total protein content, cell morphology, and the ratio of mitochondrial DNA to nuclear DNA were preserved. Cytotoxicity was low on all substrates, although slightly higher on PDMS compared to gelatin hydrogels. We also quantified oxygen consumption rates and extracellular acidification rates using a Seahorse extracellular flux analyzer. Our data indicate that several metrics associated with baseline glycolysis and baseline and maximum mitochondrial function are enhanced when cardiac myocytes are cultured on gelatin hydrogels compared to all PDMS substrates, irrespective of substrate rigidity. These results yield new insights into how mechanical and biochemical cues provided by the ECM impact mitochondrial function in cardiac myocytes.
In Acta Biomat, 2019

Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease.
In AJP Heart, 2017

Recent Publications

More Publications

. Mitochondrial architecture in cardiac myocytes depends on cell shape and matrix rigidity. In JMCC, 2020.

Project Source Document

. Regulation of calcium dynamics and propagation velocity by tissue microstructure in engineered strands of cardiac tissue. In Int Bio, 2020.

Source Document

. Matrix-guided control of mitochondrial function in cardiac myocytes. In Acta Biomat, 2019.

Project Source Document


Novel strategies for hiPSC-CM differentiation

Development of chemically defined and high yield strategies for the differentiation of hiPSCs into functional cardiomyocytes, and their characterization for potential therapeutic applications.

hiPSC-CM Modeling of Anticancer Therapy-Induced Cardiotoxicity

Investiagtion of the mechanisms behind the cardiotoxic side effects of anti-cancer therapies, in special monoclonal antibodies such as trastuzumab and tyrosine kinase inhibitors.

Extracellular matrix regulation of mitochondrial function and structure in cardiac myocytes

Studies on the regulation of mitochondrial function and mitochondrial structure as function of ECM rigidity, composition, and tissue architecture in engineered cardiac myocytes.

Image analysis for phenotype classification in MRI

Development of image analysis algorithms focusing on image registration and segmentation to perform phenotype classification of different fat-fraction MR images.

Reconstruction of magnetic resonance flow imaging data using 3D SPIRiT

Development of algorithms to reconstruct temporal-accelerated spiral Fourier velocity encoded (FVE) MRI using 3D SPIRiT and different temporal acceleration approaches.

Reconstruction of magnetic resonance flow imaging data using parallel imaging

Development of algorithms to reconstruct spiral Fourier velocity encoded MRI data using parallel imaging, especially 2D SPIRiT.

Color calibration and scene classification

Development of image processing algorithms to be applied on color calibration between different devices, and scene classification.